If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+20x=150
We move all terms to the left:
10x^2+20x-(150)=0
a = 10; b = 20; c = -150;
Δ = b2-4ac
Δ = 202-4·10·(-150)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-80}{2*10}=\frac{-100}{20} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+80}{2*10}=\frac{60}{20} =3 $
| (X+3)+(y+3)=42 | | 2x-x=123 | | X^2-10x+30=54 | | 3=x+24/6 | | 15=2p+9-5p | | x2+(3x)=700 | | 35=9×x | | 9^(-9y)=2 | | Y=20+13x | | m=4=14 | | 4x/x-3=2+12/x-3 | | x=3=5x-7 | | 2^x+3=64 | | b.2=10 | | 2x-9/4=x+2 | | b×2=10 | | 3u^2-12u+6=0 | | 5x^2-5=420 | | -5(a+3=-15 | | (4x+4)+12x+2x+((4x+4)-2x)+(12x-(6x-3))+(6x-3)=360 | | 6z-z=-2+3z-1-1 | | 3(2-x)=10 | | (51/5)5=25x | | 4x+4+12x+2x+(4x+4-2x)+(12x-6x-3)+6x-3=360 | | 1=7v-9 | | 7v=48+v | | 5^4=125^x-1 | | 10^2x=495 | | 3t2+18t=0 | | (3x-36)=90 | | 2x-12=3x-15=23 | | 10x+24=8x-6 |